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The Finite Element Gaussian Belief Propagation method (FGaBP) introduced recently provides a powerful parallel alternative to
conventional Finite Element Method (FEM) solvers. In this work we accelerate the FGaBP convergence by combining it with two
methods based on residual minimization techniques. Numerical results show considerable reductions in the total number of operations
while maintaining the scalability features of FGaBP.
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I. INTRODUCTION

PARALLEL methods, such as the recently introduced
Finite Element Gaussian Belief Propagation (FGaBP)

method [1], address the challenging problem of attaining high
computational scalability on manycore computing architectures
used in High Performance Computing (HPC) platforms. The
FGaBP algorithm, when adapted in a multigrid setting [2],
demonstrated considerable scalability over conventional Finite
Element Method (FEM) software. This was a direct conse-
quence of the FGaBP probabilistic reformulation of the FEM
computation using distributed message updates on a matrix-
free data-structure. Most importantly, the multigrid adapted
FGaBP (FMGaBP) solver [2] eliminates the need to perform
global algebraic operations such as Sparse Matrix Vector Mul-
tiplies (SMVMs). Nonetheless, to help extend the applicability
of the FGaBP solver to a wider range of applications, we here
explore accelerating it using residual minimization with vari-
ants of Krylov subspace methods. While this may reduce the
distributed behavior of FGaBP by introducing global algebraic
operations after a number of FGaBP message update sweeps,
our results show that a considerable reduction in number of
operations can be realized making this solution very beneficial.

A key challenge emerges when accelerating FGaBP in the
context of Krylov methods. The FGaBP solver uses distributed
message computation supporting arbitrary update schedules,
thus generating an iteration matrix is not tractable. As a result,
a conventional approach Krylov preconditioner can not be
used. In this work, a residual minimization technique and a
flexible Krylov subspace method are used with the FGaBP
solver to accelerate its convergence. Our results demonstrate
considerable reductions in the overall computational load of
FGaBP using these techniques.

II. BACKGROUND

The FGaBP formulates the FEM as a variational inference
problem by modifying its functional form as follows:

P(U) =
1

Z

∏
s∈S

Ψs(Us) (1)

where Z is a normalizing constant, Ψs(Us) are local factor
functions corresponding to each finite element indexed by s in
the S set of finite elements, U is the variables vector, and Us

is the subset variables connected to factor Ψs. For Symmetric
Positive Definite problems, Ψs takes a multivariate Gaussian
form albeit unnormalized. Correspondingly, the nodal variables
are each assumed to model a random Gaussian variable. It can
be shown that the solution to the underlying FEM problem
can alternatively be obtained by inferring the marginal mean
and variance parameters of each of the Gaussian variables in
U . This, in turn, motivates the use of the Belief Propagation
(BP) [3] as a computational inference algorithm. The BP is a
recursive message passing algorithm that exhibits highly dis-
tributed computations by using intermediate results, generally
referred to as local beliefs. The resulting FGaBP algorithm
communicates messages between variable nodes representing
U and factor nodes representing each finite element in a
localized matrix-free form. Since the FGaBP messages take
Gaussian forms, each message is composed of two parameters,
a first order parameter (β) and a second order parameter
(α). In [2], it was shown that the FGaBP can be adapted
into a completely distributed and stationary multigrid process
resulting in high computational scalability.

III. FGABP ACCELERATION USING ITERATIVE
RECOMBINATION AND KRYLOV SUBSPACES

The FGaBP can be accelerated using message relaxation,
as shown in [4], resulting in considerable iteration reductions.
However, such an approach can be limited since it uses infor-
mation from only the previous iteration solution. In this work,
we aim to obtain better solution approximations using a longer
history of previous approximations. The successive solution
approximations are obtained using the criterion to minimize
the residual. The framework of this method is highlighted in
[5, pp. 280-282] and [6] and is referred to as acceleration by
Iterant Recombination (IR). The successive solution estimates
ū(m) at iteration m is obtained as a linear combination of m̃



Fig. 1. Iteration reduction ratios of the FGaBP accelerated using the IR and the GMRES methods. The top numbers represent the DoF for each set, the lower
numbers in parentheses (· , ·) represent the inner FGaBP iterations and the size of the subspace, respectively.

previous solutions as follows:

ū(m) = u(m) +

m̃∑
i=1

ai(u
(m−i) − u(m)). (2)

Here the factors ai are chosen such that the residual L2-norm
is minimized as follows:

ao = arg min
a
‖d(m) +

m̃∑
i=1

ai(d
(m−i) − d(m))‖2. (3)

The IR method, while presented for multigrid in [5], exhibits
great flexibility for the FGaBP algorithm. The FGaBP algo-
rithm, as shown in [2], can be restarted from an arbitrary
solution. At the IR step, the method needs to perform global op-
erations such as SMVM and dot products; however in between
the IR iterations, the FGaBP can perform a number of arbitrary
update sweeps maintaining its distributed nature. Here, the
SMVM operation utilizes the FGaBP matrix-free data-structure
without a major impact on memory other than storing the
truncated Krylov subspace since typically m̃ <= 10.

The next approach we consider is to use the FGaBP to the
effect of a preconditioner to a Krylov subspace method. A
modified Krylov method of the classical Generalized Mini-
mum Residual (GMRES) referred to as the Flexible GMRES
(FGMRES) method [7, pp. 287-290] can accommodate a
dynamically-varying preconditioner such as the FGaBP. The
FGMRES computes the solution vector using a linear combi-
nation of the preconditioned orthonormalized subspace zj =
M−1vj . The FGaBP here is used as a right preconditioner by
resetting its right-hand-side using the vj vectors and restarting
only its β messages from zero since the α messages depend
only on the operator rather than the right-hand-side.

IV. RESULTS

The behavior of the new algorithms is tested using the
well-known 2D square conductor Laplace potential problem.
The problem uses Dirichlet and Neumann boundary conditions
and has a dimension of 1 cm. A quadrilateral mesh is used
to mesh the domain containing one of the corners of the
square conductor along the two lines of symmetry. All the
experiments were terminated when the normalized residual’s
L2-norm dropped below 10−6.

The plots in Fig. 1 show the iteration reduction ratios
of the FGaBP accelerated by IR (IR-FGaBP) and FGMRES
(FGMRES-FGaBP). Experiments are performed for three sets
of Degrees of Freedom (DoF), each with six variations on
FGaBP inner iterations and three subspace sizes. The reduction
ratios are obtained by dividing the total number of FGaBP
iterations by itself with relaxation [4] over the total iterations of
the accelerated method, which indicate the reductions on total
Floating Point Operations (FLOPs). The IR-FGaBP obtained
the highest ratios on all experiments showing a growing trend
of reduction ratios with increasing DoFs. As DoFs increase the
FGMRES-FGaBP benefits from more inner FGaBP iterations,
but stagnates rapidly compared to the IR-FGaBP.

V. CONCLUSION

The highly parallel FGaBP algorithm was demonstrated to
also be amicable for acceleration using variants of Krylov
methods resulting in considerable iteration reductions. The IR
method showed considerably higher iteration reductions than
FGMRES preconditioning, without considerable impact on the
scalability of the combined algorithms. The long version paper
will include more detailed analysis and results of this approach
along with an extension to FMGaBP in order to address large
scale problems. Also, other residual minimization schemes can
be explored for the IR method such as Gram-Schmidt and
Householder orthogonalizations.
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